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Abstract
We study the spatial correlations of the one-dimensional KPZ surface for the
flat initial condition. It is shown that the multi-point joint distribution for
the height is given by a Fredholm determinant, with its kernel in the scaling
limit explicitly obtained. This may also describe the dynamics of the largest
eigenvalue in the GOE Dyson’s Brownian motion model. Our analysis is based
on a reformulation of the determinantal Green’s function for the totally ASEP
in terms of a vicious walk problem.

PACS numbers: 05.40.−a, 81.10.Aj, 02.50.Ey, 68.55.Ac

Surface growth has been an important subject of physics both from practical and fundamental
aspects. While good control of it is crucial in recent atom-scale technology, a rich variety of
interesting surface patterns has attracted much attention of theoretical studies [1, 2]. It is also
important from the point of view of nonequilibrium statistical mechanics.

It is in general difficult to obtain detailed information about the properties of surfaces by
analytical methods. However, in one spatial dimension some surface growth models are known
to be exactly solvable. They are very special in many respects, but give us much insight into
understanding the properties of surfaces in nature. The Kardar–Parisi–Zhang (KPZ) equation,
introduced in [3], is one of the minimal models in the theory of surface growth which have
both nonlinear and noise effects. Many models were shown to belong to the same universality
class as the KPZ equation, i.e., the KPZ universality class [4]. But the analysis was mainly
restricted to the exponents for some time.

A next breakthrough comes from an observation that some surface growth models, in
particular the polynuclear growth (PNG) model, are related to the combinatorial problem of
Young tableaux [5]. In [6, 7], the height fluctuation of the surface in the KPZ universality
class was shown to be equivalent to that of the largest eigenvalue of random matrices [8].
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One of the important results is that the height fluctuation at one point strongly depends
on boundary and initial conditions [6, 9, 10]. For instance, droplet growth, in which the
surface starts from a seed and grows into a droplet shape, is related to the Gaussian unitary
ensemble (GUE); the model on a flat substrate is related to the Gaussian orthogonal ensemble
(GOE).

More recently, spatial correlations of the surface, which have information about how
rough the surface is, have been calculated. For the droplet growth, it was shown to be
equivalent to the dynamics of the largest eigenvalue of the GUE Dyson’s Brownian motion
model [11–14]. The PNG model with external sources and that in half-space have also been
studied [15–17]. All these results have been obtained by introducing the multi-layer version
of the PNG model [12, 13]. A relationship between the topology of multi-layers and the
universality classes in random matrix theory has also been discussed [18].

The spatial correlations for the flat case are important for several reasons. This case is
suitable for studying how an initially straight surface without fluctuation grows into a rough
one. Many simulations have been performed for the flat case. In addition, there is a more
theoretical interest. It is possible to define the multi-layer PNG model for the flat case and the
fluctuations of the multi-layers at one point are shown to be the same as those of the largest
eigenvalues of the GOE [19]. Combined with the spatial homogeneity of the flat case, this
suggests that the flat case is related to the GOE Dyson’s Brownian motion model [11], which
is equivalent to the β = 1 case of the Calogero model [20, 21]. Since this is not a free fermion
model, the analysis of the flat case might well be qualitatively more difficult than for other
cases. Note that the constraints of the multi-layers are complicated and have not allowed us
to study the multi-point fluctuation.

In this letter, we tackle this problem by a related but different method, i.e., by utilizing
a formula for the one-dimensional totally asymmetric simple exclusion process (TASEP) on
an infinite lattice. There are several versions of the update rules for TASEP. Here we consider
the continuous time version, which is the most well studied. In TASEP, each site is either
occupied by a particle or empty. In an infinitesimal time duration dt each particle tries to hop
to the right nearest site with probability dt. The hopping is not allowed if the target site is
already occupied by another particle. This is a very simple model but exhibits much interesting
behaviour [22–25].

We can interpret the TASEP dynamics as a kind of surface growth model if we replace
each occupied site with a slope of −45◦ and each empty site with a slope of 45◦; see figure 1.
Hopping of a particle corresponds to local surface growth in the surface growth picture. This
surface growth model is known to belong to the KPZ universality class [4]. The flat initial
condition corresponds to the initial surface configuration in which � and � occur alternately.
We study the spatial correlations of this model.

If we describe the stochastic dynamics of TASEP in terms of a master equation, it turns out
that the transition rate matrix can be written as a kind of non-Hermitian spin chain [25, 26].
In the language of spin chains, the TASEP is a kind of XXZ model and hence is not a
free fermion model. If one applies the Bethe ansatz method to TASEP, the S-matrix is not
just −1. But the Bethe ansatz analysis is useful to understand the temporal properties of
the ASEP [26, 27]. For instance, the Bethe ansatz method allows us to construct Green’s
function in the form of determinant [28]. Let G(x1, x2, . . . , xN ; t |y1, y2, . . . , yN ; 0) denote
the probability that the N particles are on sites x1, x2, . . . , xN (xN < · · · < x1) at time t
under the condition that they are on sites y1, y2, . . . , yN (yN < · · · < y1) at time 0. Then
G(x1, x2, . . . , xN ; t |y1, y2, . . . , yN ; 0) is given by

G(x1, x2, . . . , xN ; t |y1, y2, . . . , yN ; 0) = det[Fk−j (xN−k+1 − yN−j+1; t)]Nj,k=1. (1)
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Figure 1. The initial configuration of the ASEP and the corresponding surface. A surface after
some time is also shown with its asymptotic position (the dotted line).

Here the function Fn(x; t) is defined by

Fn(x; t) = e−t t
x

x!

∞∑
k=0

(n)k

(x + 1)k

tk

k!
(2)

where (n)k = n(n + 1) · · · (n + k − 1). When we fix yj , the initial configuration of particles,
we call this quantity G(x1, x2, . . . , xN ; t) as well. This formula has already been used for
studying the fluctuation properties of the TASEP and a discrete version of it [29, 30].

Now, on the other hand, let us consider a weight in the form of products of determinants,
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on xr
j (r = 1, . . . , N, j = 1, . . . , r). We put the condition x2
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3 , . . . and
the convention φ

(
xr

r+1, x
r+1
k

) = 1 for r = 1, . . . , N − 1, k = 1, . . . , r + 1. Here the functions

ψ
(r)
j (x) and φ(x1, x2) are defined by

ψ
(r)
j (x) = (−1)r−1−jF−r+1+j (x − yj+1; t) (4)

(j = 0, . . . , r−1) and φ(x1, x2) = 0 (x1 > x2),−1 (x1 � x2). Let P denote the corresponding
measure. Then we have

G(x1, . . . , xN ; t) = P
[
xr

1 = xr (r = 1, 2, . . . , N)
]
. (5)

This is one of the main results of this letter and is proved as follows. First, one shows
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with f being an arbitrary antisymmetric function of xN
j . Here the summation on the left-hand

side is over all possible configurations of xr
j (r = 1, . . . , N, j = 2, . . . , r) with xr

1 being fixed
to xr (r = 1, . . . , N). This can be shown by considering when the determinant vanishes, using
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the antisymmetry of the function f and the mathematical induction. Then using a property of
the function Fn(x; t), Fn+1(x; t) = ∑∞

y=x Fn(y; t), one arrives at (5).
If we interpret r as a time coordinate and xr

j as the position of the j th walker at r, the
weight in (3) can be interpreted as a kind of vicious walk problem with a peculiar structure that
each particle is added at each time step. The formula (5) allows us to obtain the multi-point
information of our surface model from the trajectory of the first particle, xr

1 (r = 1, 2, . . .), in
the vicious walk problem. The vicious walk problem was introduced in [31] and is regarded as
a sort of free fermion model [32]. Hence (5) explicitly states that one can study the dynamics
of the TASEP in terms of free fermions even though the transition rate matrix does not look
like a free fermion model.

For each r let us define another set of functions, ϕ
(r)
j (x) (j = 0, . . . , r − 1), which is a

polynomial of order r − 1 − j , by the condition that they are orthonormal to ψ
(r)
j (x),

∞∑
x=yr

ϕ
(r)
j (x)ψ

(r)
k (x) = δjk. (7)

We also define φr1,r2(x1, x2) by

φr1,r2(x1, x2) = (−1)r2−r1

∫
�0

dz

2π i

zx1−x2−1

(1 − z)r2−r1
(8)

for r1 < r2 and φr1,r2(x1, x2) = 0 for r1 � r2. Here �0 is a contour enclosing the origin
anticlockwise. Note φr,r+1(x1, x2) = φ(x1, x2).

We can show that our vicious walk problem is determinantal, i.e., the correlation functions
of the system are written in the determinant form. For instance, the probability that x

ri

l

(l = 1, 2, . . . , ri) are occupied by walkers at ri (i = 1, 2) is proportional to

det
[
K

(
ri1, x

ri1
l1

; ri2 , x
ri2
l2

)]
i1,i2=1,2,l1=1,...,ri1 ,l2=1,...,ri2

. (9)

Here the matrix element is given by

K(r1, x1; r2, x2) = K̃(r1, x1; r2, x2) − φr1,r2(x1, x2)

=
N−1∑
j=0

ψ
(r1)
j (x1)ϕ

(r2)
j (x2) − φr1,r2(x1, x2). (10)

We set ϕ
(r)
j (x) = 0 for j � r and hence the summation is actually up to r2 − 1. This fact can

be proved by following the strategy of [33] but there appear some new features compared to
the usual case of a fixed number of walkers [17]. For instance, when r1 < r2, ψ

(r)
j with j � r

are included in the summation of (10).
Then the joint distribution of the first particle in our vicious walk problem, which

corresponds to the joint distribution of the height in our original surface growth model, can be
described by a Fredholm determinant with the kernel given by the function K(r1, x1; r2, x2):

P
[
x

ri

1 > Xi(i = 1, . . . , m)
]

=
∞∑

k=0

(−1)k

k!

m∑
i1=1

X1∑
x1=yri1

. . .

m∑
ik=1

Xk∑
xk=yrik

det
[
K

(
ril1

, xl1; ril2
, xl2

)]k

l1,l2=1. (11)

Up to here our discussions are for general initial configuration. We believe that there are
many applications of the formula (5) to study the temporal properties of TASEP. In this letter,
we concentrate on analysing the spatial correlations of the KPZ surface for the flat initial
condition, which has not been solved by the usual multi-layer PNG techniques.
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We take a special initial condition, yj+1 = −2j (j = 0, . . . , N − 1). See figure 1.
This is not exactly the flat initial condition, but deep inside the negative (x < 0) region,
the correlations are the same as the flat case because the effect of the boundary is restricted
near the origin at finite time. One can also restrict the number of particles to N since
the dynamics of a particle cannot affect the dynamics of particles on its right. Let h(x, t)

denote the surface height at position x and at time t. The limiting shape is known to be
h(x, t)/t ∼ 1

2 (x � 0), 1
2

(
1 + x2

t2

)
(0 < x � t), x/t (x � t). We are interested in the fluctuation

around this.
For the special choice yj+1 = −2j , one can find an explicit formula for ϕ

(r)
j (x),

ϕ
(r)
j (x) = (−1)r−1−j

2π i

∫
�0

dz
1 + 2z

1 + z

(1 + z)x+r+j−1

zr−j
e−zt . (12)

It is not difficult to check the orthonormality relation (7). As a consequence, the kernel has a
double contour integral expression,

K(r1, x1; r2, x2) =
∫

�−1

dw

2π i

∫
�0

dz

2π i

(1 + z)x2+r2−2(−w)r1(1 + 2z) e(w−z)t

(1 + w)x1+r1−1(−z)r2(w − z)(1 + w + z)
− φ̃r1,r2(x1, x2)

(13)

where �−1 is a contour enclosing −1 anticlockwise and

φ̃r1,r2(x1, x2) =
∫

�0

dz

2π i
zx2+r2−x1−r1−1(1 − z)r1−r2 . (14)

Now we consider the scaling limit, in which universal properties of the model are expected
to appear. First let us consider the positive (x > 0) region. In this case, it is convenient to set

ri = tρi = tρ + 2
√

ρt2/3τi/d, (15)

xi + ri − 1 = (1 − √
ρi)

2t − (1 − √
ρ) dt1/3ξi, (16)

where d = ρ−1/6(1 − √
ρ)−1/3 for i = 1, 2, and take the t → ∞ limit with ρ fixed. Note

that 0 < ρ < 1/4 corresponds to looking at the positive (x > 0) region. Applying the saddle
point analysis to (13), we get the limiting kernel,

K2(τ1, ξ1; τ2, ξ2) = K̃2(τ1, ξ1; τ2, ξ2) − �2(τ1, ξ1; τ2, ξ2) (17)

where

K̃2(τ1, ξ1; τ2, ξ2) =
∫ ∞

0
dλ e−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ), (18)

�2(τ1, ξ1; τ2, ξ2) =
∫ ∞

−∞
dλ e−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ) (19)

for τ1 < τ2 and �2(τ1, ξ1; τ2, ξ2) = 0 for τ1 � τ2. This is the kernel for the Airy process
[12, 13]. Hence we conclude that the fluctuation of surface in the positive (x > 0) region is
the same as that of the droplet growth. The spatial correlation of the surface is the same as the
dynamics of the largest eigenvalue in the GUE Dyson’s Brownian motion model.

Next we consider the negative (x < 0) region. We want to study the fluctuation of the
scaled height,

A1(τ ) = 2t−1/3(t/2 − h
(
x = (

1
2 − 2ρ

)
t − t2/3τ, t

))
(20)

for ρ > 1/4 as t → ∞. This corresponds to setting

ri = tρ + t2/3τi/2, (21)
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xi + 2ri − 2 = t/2 − t1/3ξi/2, (22)

in the kernel and take the t → ∞ limit. In the scaling limit, a contribution from the pole at
z = −1 − w in (13),

K̃1(r1, x1; r2, x2) =
∫

�−1

dw

2π i

(−w)x2+r1+r2−2 e(2w+1)t

(1 + w)x1+r1+r2−1
, (23)

turns out to be dominant. Applying the saddle point analysis to (23), we get the limiting
kernel,

K1(τ1, ξ1; τ2, ξ2) = K̃1(τ1, ξ1; τ2, ξ2) − �1(τ1, ξ1; τ2, ξ2) (24)

where

K̃1(τ1, ξ1; τ2, ξ2) = 1

2
e(τ2−τ1)(ξ1+ξ2)/4+(τ2−τ1)

3/12Ai

(
ξ1 + ξ2

2
+

(τ2 − τ1)
2

4

)
, (25)

�1(τ1, ξ1; τ2, ξ2) = 1√
8π(τ2 − τ1)

exp

[
− (ξ2 − ξ1)

2

8(τ2 − τ1)

]
(26)

for τ1 < τ2 and �1(τ1, ξ1; τ2, ξ2) = 0 for τ1 � τ2. The result is valid for the whole negative
(x < 0) region. The fact that the multi-point joint distribution of the 1D KPZ surface on a
flat substrate is given by the Fredholm determinant of this kernel is another main result of this
letter.

We remark that the Fredholm determinant of the kernel with τ1 = τ2(= τ),

K1(τ, ξ1; τ, ξ2) = 1

2
Ai

(
ξ1 + ξ2

2

)
, (27)

gives the one point height fluctuation in the negative (x < 0) region and hence should be
equivalent to the GOE Tracy–Widom distribution function F1(s) [34]. Though we do not
know how to prove this directly at the moment, the statistics computed from the kernel agrees
very well with the GOE values numerically.

The kernels, K1 and K2, have a lot of statistical information about the surface. For
instance, using the joint distribution at time 0 and τ , we can compute

gn(τ ) =
√

〈(An(τ) − An(0))2〉/2 (28)

for n = 1, 2. Here A1(τ ) is defined in (20) and A2(τ ) is the Airy process [12, 13]. It is
clear that limτ↓0 gn(τ ) = 0 and g1(τ ) (respectively g2(τ )) approaches the standard deviation
of the GOE (respectively GUE) largest eigenvalue 1.2680 (respectively 0.9018) as τ → ∞.
In figure 2, we show the comparison of this quantity between our theoretical predictions and
Monte Carlo simulation results for the surface growth model. The agreement is very good.

Combined with the conjecture in [19], the fluctuation of the largest eigenvalue in the GOE
Dyson’s Brownian motion model may also be described by the kernel, K1. It is desirable to
have a better understanding of this connection. It is also an interesting question to see if the
joint distribution for the GOE case satisfies some differential equations. They would be helpful
to understand the properties of our process A1(τ ). For A2(τ ), such differential equations are
already known [35, 36].

To summarize, we have shown that Green’s function for the TASEP can be interpreted
as a vicious walk problem. This demonstrates a hidden free fermionic structure behind the
TASEP and opens up a possibility of analysing time-dependent properties of the model in
the language of free fermions. By using the formula, we have found an exact expression for
the multi-point joint distribution of the KPZ surface for the flat initial condition. It is written



Letter to the Editor L555

0 1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

1.4

τ

gn(τ)

Figure 2. Comparison of the correlation gn(τ) (n = 1, 2) computed from the Fredholm expressions
(solid lines) and Monte Carlo simulations (circles). The upper ones are for the negative (x < 0)

region and the lower ones for the positive (x > 0) region.

in the form of the Fredholm determinant and the kernel in the scaling limit has been explicitly
obtained. This is expected to be universal for the KPZ surface on a flat substrate and may
have relevance for the study of the GOE Dyson’s Brownian motion. More detailed analysis
and results for the discrete TASEP will be reported elsewhere [37].
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